
neural processing letters manuscript No.
(will be inserted by the editor)

Fast and Stable Learning Utilizing Singular Regions of
Multilayer Perceptron

Seiya Satoh · Ryohei Nakano

the date of receipt and acceptance should be inserted later

Abstract In the parameter space of MLP(J), multilayer perceptron with J
hidden units, there exist flat areas called singular regions created by applying
reducibility mappings to the optimal solution of MLP(J−1). Since such sin-
gular regions cause serious stagnation of learning, a learning method to avoid
singular regions has been desired. However, such avoiding does not guarantee
the quality of the final solutions. This paper proposes a new learning method
which does not avoid but makes good use of singular regions to stably and suc-
cessively find excellent solutions commensurate with MLP(J). The proposed
method worked well in our experiments using artificial and real data sets.

Keywords multilayer perceptron · learning method · reducibility mapping ·
singular region · search space

1 Introduction

Let MLP(J) be a multilayer perceptron having J hidden units. It is known in
MLP(J) parameter space that a subspace having the same input-output map
as the optimal solution of MLP(J−1) can form a flat area called a singular
region, and the singular region causes stagnation of learning [5]. Long time
ago Hecht-Nielsen pointed out MLP parameter space is full of such flat areas
and troughs [7], and recent experimental research [11] supported his insight to
reveal most search points have huge condition numbers, e.g. more than 1015.

Natural gradient [1,2] was once proposed to avoid the stagnation of learn-
ing, but even the method may get stuck in singular regions and is not guar-
anteed to find an excellent solution. It is reported [14] an adaptive learning

S. Satoh · R. Nakano
Department of Computer Science, Chubu University
1200 Matsumoto-cho, Kasugai, 487-8501 Japan
E-mail: nakano@cs.chubu.ac.jp



2 Seiya Satoh, Ryohei Nakano

rate improves the performance of natural gradient. Recently an alternative
constructive method to decide suitable weights has been proposed [8].

It is also known that many useful statistical models, such as MLP, Gaussian
mixtures, and HMM, are singular models having singular regions where param-
eters are nonidentifiable. Theoretical research has been eagerly done to clarify
mathematical characteristics of singular models and especially Watanabe has
produced fruit of singular learning theory [15,16]; however, experimental re-
search is rather insufficient to fully support the theories.

In MLP parameter space there are a number of local minima forming equiv-
alence class [13]. Even if we exclude redundant solutions belonging to equiva-
lence class, it is widely believed that there still remain local minima [4]. When
we adopt an exponential function as an activation function [10], there surely
exist local minima due to the expressive power of polynomials. In XOR prob-
lem, however, it was proved there is no strict local minima [6]. Thus, since we
have no clear knowledge of MLP parameter space, we run a learning method
repeatedly changing initial weights to find an excellent solution.

This paper proposes an extended version of SSF [11], called SSF1.2. SSF1.2
does not avoid but makes good use of singular regions to stably and succes-
sively find excellent solutions. The method starts with an MLP having one
hidden unit and then gradually increases the number of hidden units until the
intended number. When it increases the number of hidden units from J−1 to
J , it utilizes the optimum of MLP(J−1) to form two kinds of singular regions
in MLP(J) parameter space. Each singular region forms a line, and the learn-
ing method can descend in the MLP(J) parameter space since most points
along the line are saddles. Thus, we can always find a solution of MLP(J)
better than the optimum of MLP(J−1). Our method is evaluated by the ex-
periments for sigmoidal and polynomial-type MLPs using artificial and real
data sets.

2 Singular Regions of Multilayer Perceptron

This section explains that the optimum of MLP(J−1) is used to form singular
regions in MLP(J) parameter space [5]. This result is universal in the sense
that it does not depend on the choice of an error function or an activation
function.

Consider MLP(J) having J hidden units and one output unit. MLP(J) with
parameters θJ outputs fJ (x;θJ) for input x. Here g(h) denotes an activation
function, and θJ = {w0, wj , wj , j = 1, · · · , J}, where wj = (wjk).

fJ(x; θJ ) = w0 +
J∑

j=1

wjzj , zj ≡ g(wT
j x) (1)

Let input vector x = (xk) be K-dimensional. Given training data {(xµ, yµ), µ =
1, · · · , N}, we want to find the parameter vector θJ which minimizes the fol-



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 3

lowing error function.

EJ =
1
2

N∑
µ=1

(fµ
J − yµ)2, where fµ

J ≡ fJ (xµ; θJ ) (2)

At the same time we consider the following MLP(J−1) having J−1 hidden
units, where θJ−1 = {u0, uj , uj , j = 2, · · · , J}.

fJ−1(x; θJ−1) = u0 +
J∑

j=2

ujvj , vj ≡ g(uT
j x) (3)

The error function of MLP(J−1) is defined as follows.

EJ−1(θ) =
1
2

N∑
µ=1

(fµ
J−1 − yµ)2, where fµ

J−1 ≡ fJ−1(xµ;θJ−1) (4)

Let θ̂J−1 denote a critical point of MLP(J−1), which satisfies the following

∂EJ−1(θ)
∂θ

= 0. (5)

The necessary conditions for the critical point of MLP (J−1) are shown below.
Here j = 2, · · · , J and vµ

j ≡ g(uT
j xµ).

∂EJ−1

∂u0
=
∑

µ

(fµ
J−1 − yµ) = 0 (6)

∂EJ−1

∂uj
=
∑

µ

(fµ
J−1 − yµ) vµ

j = 0 (7)

∂EJ−1

∂uj
= uj

∑
µ

(fµ
J−1 − yµ) g′(uT

j xµ) xµ =0 (8)

Now we consider the following three reducibility mappings α, β, γ, and let Θ̂
α

J ,

Θ̂
β

J , and Θ̂
γ

J denote the regions obtained by applying these three mappings to
the optimum θ̂J−1 = {û0, ûj , ûj , j = 2, · · · , J} of MLP(J−1). Each reducibil-
ity mapping maps the optimal point of MLP(J−1) to MLP(J) subspace called
a singular region. Any two points in the region are I-O equivalent since they
have the same input-output mapping from x to fJ . Moreover, MLP(J) at any
point in the region is equivalent to MLP(J−1) at the optimal point. These can
be seen by examining the value setting of weights in the following mappings.

θ̂J−1
α−→ Θ̂

α

J , θ̂J−1
β−→ Θ̂

β

J , θ̂J−1
γ−→ Θ̂

γ

J (9)



4 Seiya Satoh, Ryohei Nakano

Θ̂
α

J ≡ {θJ | w0 = û0, w1 = 0,

wj = ûj ,wj = ûj , j =2, · · · , J} (10)

Θ̂
β

J ≡ {θJ | w0 + w1g(w10) = û0, w1 =[w10, 0, · · · , 0]T ,

wj = ûj ,wj = ûj , j =2, · · · , J} (11)

Θ̂
γ

J ≡ {θJ | w0 = û0, w1 + w2 = û2, w1 =w2 = û2,

wj = ûj ,wj = ûj , j =3, · · · , J} (12)

(1) region Θ̂
α

J is (K+1)-dimensional since free vector w1 is (K+1)-dimensional.

(2) region Θ̂
β

J is two-dimensional since all we have to do is to satisfy the fol-
lowing

w0 + w1 g(w10) = û0. (13)

(3) region Θ̂γ is a line since we have only to satisfy the following

w1 + w2 = û2. (14)

Here we review a critical point where the gradient ∂E/∂θ of an error
function E(θ) gets zero. In the context of minimization, a critical point is
classified into a local minimum and a saddle. A critical point θ0 is classified as
a local minimum when any point θ in its neighborhood satisfies E(θ0) ≤ E(θ),
otherwise is classified as a saddle.

In this paper we classify a local minimum into a wok-bottom and a gutter.
A wok-bottom θ0 is a strict local minimum where any point θ in its neighbor-
hood satisfies E(θ0) < E(θ), and a gutter is a continuous subspace where any
points θ1 and θ2 in the subspace satisfy E(θ1) = E(θ2) or E(θ1) ≈ E(θ2),
and any point θ in its neighborhood satisfies E(θ1) < E(θ).

The necessary conditions for the critical point of MLP (J) are shown below.
Here j = 2, · · · , J and zµ

j ≡ g(wT
j xµ).

∂EJ

∂w0
=
∑

µ

(fµ
J − yµ) = 0 (15)

∂EJ

∂w1
=
∑

µ

(fµ
J − yµ) zµ

1 = 0 (16)

∂EJ

∂wj
=
∑

µ

(fµ
J − yµ) zµ

j = 0, (17)

∂EJ

∂w1
= w1

∑
µ

(fµ
J − yµ) g′(wT

1 xµ) xµ = 0 (18)

∂EJ

∂wj
= wj

∑
µ

(fµ
J − yµ) g′(wT

j xµ) xµ = 0 (19)

Then we check if regions Θ̂
α

J , Θ̂
β

J , and Θ̂
γ

J satisfy these necessary condi-
tions. Note that in these regions we have fµ

J = fµ
J−1 and vµ

j = zµ
j , j = 2, · · · , J .



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 5

Thus, we see that the first, third, and fifth equations hold, and the second and
fourth equations are needed to check.

(1) In region Θ̂
α

J , since weight vector w1 is free, the output of the first hidden
unit zµ

1 is free, which means it is not guaranteed that the second equation
holds. Thus, Θ̂

α

J is not a singular region in general.

(2) In region Θ̂
β

J , since zµ
1 (= g(w10)) is independent on µ, the second equation

can be reduced to the first one, and holds. However, the fourth equation does
not hold in general unless w1 = 0. Thus, the following area included in both
Θ̂

α

J and Θ̂
β

J forms a singular region where w10 is free. This region is called

Θ̂
αβ

J and reducibility mapping from θ̂J−1 to Θ̂
αβ

J is called αβ.

w0 = û0, w1 = 0, w1 = [w10, 0, · · · , 0]T

wj = ûj , wj = ûj , j = 2, · · · , J (20)

(3) In region Θ̂
γ

J , since zµ
1 = vµ

2 , the second and fourth equations hold. Namely,
Θ̂

γ

J is a singular region. Here we have one degree of freedom since we only have
the following restriction.

w1 + w2 = û2 (21)

3 SSF1.2 (Singularity Stairs Following, ver. 1.2) Method

This section proposes an extended version of SSF [11], which makes good use

of the whole singular regions Θ̂
γ

J and Θ̂
αβ

J of MLP. The proposed method is
called SSF1.2, while the original SSF [11] is called SSF1.0 hereafter.

SSF1.2 differs from SSF1.0 twofold. One is the extension of search areas;
that is, SSF1.2 searches both Θ̂

γ

J and Θ̂
αβ

J , although SSF1.0 searches only Θ̂
γ

J .
By searching the whole singular regions, we expect to find better solutions and
will get more insight into MLP search space. The other is reduction of the load
to search the region Θ̂

γ

J ; namely, SSF1.2 employs an efficient way as shown
below, while SSF1.0 employs an exhaustive way.

Below we explain how to search these two singular regions. It is rather easy
to search these regions since either region has only one degree of freedom and
most points in the region are saddles [5], which means we surely find a solution
of MLP(J) better than the optimum of MLP(J−1).

As for Θ̂
αβ

J , SSF1.2 searches the region using the Hessian matrix H(=
∂2E/∂w∂wT ). Otherwise we cannot move the search point since the region
is completely flat. Each negative eigen value of H is picked up, and its eigen
vector v and its negative vector −v are selected as two search directions for
the eigen value. The appropriate step length is decided using line search called
golden section [9]. After the first move, the search is continued using BPQ.

As for Θ̂
γ

J , SSF1.2 begins with focusing on the following three points in
Θ̂

γ

J : a middle interpolation point, an all-or-nothing point, and an extrapolation



6 Seiya Satoh, Ryohei Nakano

point. These points correspond to p = 0.5, 1.0, and 1.5 respectively in the
following equations. Note that the restriction eq. (21) is satisfied for each p.

w1 = p û2, w2 = (1− p) û2 (22)

At each of the above three points, the Hessian H is calculated, each negative
eigen value of H is picked up, and then its eigen vector v and its negative vector
−v are selected as two search directions for the eigen value. The appropriate
step length is decided using line search. After the first move, the search is
continued using BPQ. The original SSF1.0 searches the region changing initial
points many times in the form of interpolation or extrapolation of eq.(21).

The procedure of SSF1.2 is described below. It searches the space by as-
cending singularity stairs one by one, beginning with MLP(J=1) and gradually
increasing J until the intended largest number Jmax. The optimal MLP(J=1)
is found just applying reducibility mapping αβ to the optimal MLP(J=0);
MLP(J=0) is only a constant model. Here w

(J)
0 , w

(J)
j , and w

(J)
j denote weights

of MLP(J). Compared with SSF1.0 [11], step 1 requires only two runs instead
of many runs, step 2-1 is added to incorporate reducibility mapping αβ, and
step 2-2 reduces the number of search points for reducibility mapping γ.

SSF1.2 (Singularity Stairs Following, ver. 1.2):
(step 1) Initialize weights of MLP(J=1) using reducibility mapping αβ:

w
(1)
0 ← ŵ

(0)
0 (= y), w

(1)
1 ← 0, w

(1)
1 ← [0, 0, · · · , 0]T .

Pick up each negative eigen value of H and select its eigen vector v and −v
as two search directions for the eigen value. Find the appropriate step length
using golden section. Then perform MLP(J =1) learning and let the best be
ŵ

(1)
0 , ŵ

(1)
1 , and ŵ

(1)
1 . J ← 1.

(step 2) While J < Jmax, repeat the following to get the optimal MLP(J+1)
from the optimal MLP(J).
(step 2-1) Initialize weights of MLP(J+1) applying reducibility mapping αβ
to the optimal MLP(J):

w
(J+1)
j ← ŵ

(J)
j , j = 0, 1, · · · , J, w

(J+1)
j ← ŵ

(J)
j , j = 1, · · · , J

w
(J+1)
J+1 ← 0, w

(J+1)
J+1 ← [0, 0, · · · , 0]T .

Pick up each negative eigen value of H and select its eigen vector v and −v
as two search directions for the eigen value. Find the appropriate step length
using golden section. Then perform MLP(J+1) learning and keep the best as
the best MLP(J+1) of αβ.
(step 2-2) If there are more than one hidden units in MLP(J), repeat the
following for each hidden unit m(= 1, · · · , J) to split.
Initialize weights of MLP(J+1) using reducibility mapping γ:

w
(J+1)
j ← ŵ

(J)
j , j ∈ {0, 1, · · · , J} \ {m}, w

(J+1)
j ← ŵ

(J)
j , j = 1, · · · , J

w
(J+1)
J+1 ← ŵ(J)

m .
Initialize w

(J+1)
m and w

(J+1)
J+1 three times as follows with p=0.5, 1.0, and 1.5.

w
(J+1)
m ← p ŵ

(J)
m , w

(J+1)
J+1 ← (1− p) ŵ

(J)
m

At each of the above three points, pick up each negative eigen value of H and



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 7

select its eigen vector v and −v as two search directions for the eigen value.
Find the appropriate step length using line search. Then perform MLP(J+1)
learning and keep the best as the best MLP(J+1) of γ for m.
(step 2-3) Among the best MLP(J+1) of αβ and the best MLP(J+1)s of γ for
different m, select the true best and let the weights be ŵ

(J+1)
0 , ŵ

(J+1)
j , ŵ

(J+1)
j ,

j=1, · · · , J+1. Then J ← J+1.

Now we claim the following, which will be evaluated in our experiments.
(1) Compared with existing methods such as BP, Newton’s method, quasi-
Newton methods, SSF1.2 will find excellent solutions of MLP(J) with much
higher probabilities.
(2) The excellent solution of MLP(J) will be obtained one after another for J =
1, · · · , Jmax. These excellent solutions can be used for model selection. SSF1.2
guarantees that the solution of MLP(J+1) is better than that of MLP(J)
since SSF1.2 descends in MLP(J+1) search space from the singular region
corresponding to the optimal solution of MLP(J). Such monotonic decrease of
training error is not guaranteed for the existing methods.
(3) Since SSF1.2 uses much few search points than the original SSF1.0, SSF1.2
will be much faster than SSF1.0. SSF1.2 will also be faster than the existing
methods if they are performed many times changing initial weights.

4 Experiments

We evaluate the proposed SSF1.2 for sigmoidal and polynomial-type MLPs
using artificial and real data sets. Activation functions g(h) in eq. (1) for
sigmoidal and polynomial-type MLPs are g(h) = 1/(1 + e−h) and g(h) =
exp(h) respectively. The output of polynomial-type MLP is written as follows.

fJ =
J∑

j=0

wjzj , zj = exp

(
K∑

k=1

wjk lnxk

)
(23)

The above can be rewritten as below, representing a multivariate polynomial
where wj represents a coefficient and wjk represents a power [10].

fJ =
J∑

j=0

wjzj , zj =
K∏

k=1

(xk)wjk (24)

In performing SSF, since we have to move in singular flat regions, we
employ weak weight decay. As a learning engine of SSF we use a kind of quasi-
Newton method called BPQ [12] since any first-order method is too slow.

As existing learning methods we employed BP and BPQ for comparison.
Here the learning rate of BP is set to be 0.001, since a relatively large learning
rate does not work well. BP or BPQ is performed 100 times for each MLP(J)
of each data set.



8 Seiya Satoh, Ryohei Nakano

SSF or BPQ stops when a step length is less than 10−30 or the iteration
exceeds 20,000 sweeps. BP stops when the training error is not improved any
more or the iteration exceeds 200,000 sweeps. As for the initialization of MLP
weights, wjk and wj are randomly selected from the range [−1, 1], except a
bias w0 = y.

4.1 Experiment of Sigmoidal MLP using Artificial Data

An artificial data set for sigmoidal MLP was generated using MLP having
the following weights. Values of each explanatory variable x1, x2, · · · , x8 were
randomly selected from the range [0, 1], while values of y were generated
by adding small Gaussian noise N (0, 0.052) to MLP outputs. Note that four
variables x5, · · · , x8 are irrelevant. The sample size was 100 and the penalty
coefficient was set to be λ = 0.01. The maximum number of hidden units was
Jmax = 6, which includes the correct number J∗ = 4.


w0

w1

w2

w3

w4

=


0

15
−20

16
8

 , (w1 w2 w3 w4) =



5 6 7 5
−8 12 8 3
−7 8 5 10

8 −9 −10 7
5 −12 −6 −8
0 0 0 0
...

...
...

...


(25)

Figure 1 shows the result of SSF1.2. In each figure a horizontal axis sim-
ply indicates solution id (that is, search point id), and a vertical axis means
final sum-of-squares error E. Throughout this paper a circle indicates αβ
search, while a triangle, diamond, and upside-down triangle indicate inter-
polation (p=0.5), all-or-nothing point (p=1.0), and extrapolation (p=1.5 in
eq.(22)) of γ search respectively. We ran two MLP(J=1) learnings twice to
obtain different solutions, and the better was used for the next step. The re-
sult for MLP(J=2) is shown in Fig. 1 (a). We have two search points for
reducibility mapping αβ search, and 19 points for reducibility mapping γ
search. The best was used for the next step. The results for MLP(J=3, 4,
and 6) are shown in Fig. 1 (b), (c), and (d) respectively. The total number of
search points was 233 (=2+21+35+48+56+71). Since the number was 1615
(=100+101+202+303+404+505) for SSF1.0 [11], SSF1.2 reduced the total
number of search points by 6.93 (=1615/233) times. We see the best solution
was frequently obtained from different splitting.

As existing methods we ran BP and BPQ 100 times each. Table 1 compares
the best training error E for each J . SSF1.2, SSF1.0 and BPQ achieved exactly
the same training error for each J . This is probably because finding the best
solution of each J seems relatively easy for this problem only if we use a 2nd-
order method such as BPQ. However, we cannot get such best solutions if
we use a 1st-order method such as BP. Moreover, all three showed monotonic



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 9

0 5 10 15 20
40

60

80

100

120

140

160

180

200

220

240
MLP(2)

E

solution id

(a) from MLP(1) to MLP(2)

0 5 10 15 20 25 30 35
5

10

15

20

25

30

35

40

45

50
MLP(3)

E

solution id

(b) from MLP(2) to MLP(3)

0 10 20 30 40
8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10
MLP(4)

E

solution id

(c) from MLP(3) to MLP(4)

0 10 20 30 40 50 60 70
7.98

8

8.02

8.04

8.06

8.08

8.1

8.12

8.14

8.16
MLP(6)

E

solution id

(d) from MLP(5) to MLP(6)

Fig. 1 Learning process of SSF1.2 for artificial sigmoidal data

decrease of E as J increased. On the other hand, BP could not improve so
much for J ≥ 3 and did not show monotonic decrease of E as J increased.

Table 1 Best training error comparison for artificial sigmoidal data

J BP BPQ SSF1.0 SSF1.2
1 321.3509 290.5380 290.5380 290.5380
2 53.9222 50.2203 50.2203 50.2203
3 44.6509 9.4990 9.4990 9.4990
4 45.9678 8.4217 8.4217 8.4217
5 45.0472 8.1476 8.1476 8.1476
6 43.7981 7.9851 7.9851 7.9851

Figure 2 compares histograms of BPQ and SSF1.2 solutions for MLP(J=4).
Here each histogram is created by dividing the value range (max value - min
value) of E into 100 equal parts. SSF1.2 reached the true solution 33 times
out of 48 with probability 0.69, while BPQ reached the true solution 13 times
out of 100 with probability 0.13. We see SSF1.2 found the excellent solution



10 Seiya Satoh, Ryohei Nakano

5.3 times more stably. Moreover, many solutions of SSF1.2 are located very
close to the true solution, while BPQ solutions are widely scattered.

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100
MLP(4)

fr
eq

ue
nc

y

E

(a) histogram of BPQ solutions

10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

MLP(4)

fr
eq

ue
nc

y

E

(b) histogram of SSF1.2 solutions

Fig. 2 Histograms of solutions for artificial sigmoidal data

Table 2 compares CPU time spent for learning artificial sigmoidal data.
SSF1.2 is 6.16 times faster than SSF1.0 mainly because the number of search
points is greatly reduced, as stated above. For this data, SSF1.2 is 2.19 times
faster than BPQ. BP was 505.7 times slower than SSF1.2 and all runs stopped
by reaching the iteration upper bound.

Table 2 CPU time comparison for artificial sigmoidal data (sec)

J BP BPQ SSF1.0 SSF1.2
1 1414.31 3.24 3.23 0.07
2 1576.20 3.19 4.74 1.00
3 1615.36 5.80 8.39 1.66
4 1652.16 7.98 23.74 3.80
5 1660.54 9.54 32.05 5.28
6 1664.44 11.82 44.53 7.15

total 9583.01 41.57 116.68 18.95

Table 3 compares validation error using leave-one-out. SSF1.2, SSF1.0 and
BPQ showed the same validation performance since they reached the same
weights in learning for each J . They indicated the best validation error at J=4,
which is correct. BP showed excellent validation better than SSF or BPQ when
J=4 and 6; however, BP indicated the best validation error at J=6, which is
wrong. The validation performance of BP may not be trustworthy.

4.2 Experiment of Sigmoidal MLP using Real Data

As real data for sigmoidal MLP we used Computer Hardware data from UCI
ML Repository. The number of explanatory variables is 6, and the sample size



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 11

Table 3 Validation error comparison for artificial sigmoidal data

J BP BPQ SSF1.0 SSF1.2
1 338.6513 359.2869 359.2869 359.2869
2 92.7148 100.7066 100.7066 100.7066
3 71.1548 34.9033 34.9033 34.9033
4 24.6823 30.0909 30.0909 30.0909
5 35.4931 36.7126 36.4651 36.7126
6 24.5955 39.2102 39.2102 39.2102

is 209. The penalty coefficient was λ = 0.001, and the maximum number of
hidden units was Jmax = 6.

Figure 3 shows the result of SSF1.2. We ran MLP(J=1) learning twice and
obtained the same solution, which was used for the next step. The result for
MLP(J=2) is shown in Fig. 3 (a). We have two search points for reducibility
mapping αβ search, and 14 points for γ search. Here we have several solutions
and the best was used for the next step. The results for MLP(J=3, 5, and
6) are shown in Fig. 3 (b), (c), and (d) respectively. The total number of
search points was 189 (=2+16+29+38+48+56). Since the number was 1615
(=100+101+202+303+404+505) for SSF1.0 [11], SSF1.2 reduced the total
number of search points by 8.54 (=1615/189) times. We see the best solution
was frequently obtained from different splitting. For MLP(J=6), 43 search
points out of 56 converged to much the same excellent solution.

For comparison we ran BP and BPQ 100 times each. Table 4 compares the
best training error E for each J . SSF and BPQ achieved much the same good
training error for most J , while BP achieved rather poor results for each J .
Moreover, SSF and BPQ showed preferable monotonic decrease as J increased;
however, BP did not.

Table 4 Best training error comparison for Computer Hardware data

J BP BPQ SSF1.0 SSF1.2
1 8.2336 6.6410 6.6410 6.6410
2 7.6651 4.2228 4.4408 4.2228
3 7.0291 3.0119 3.0976 3.1106
4 7.5801 2.3973 2.6093 2.4039
5 7.6931 2.1152 2.3028 2.2434
6 7.5201 2.0414 2.0414 2.0457

Figure 4 compares histograms of BPQ and SSF1.2 solutions for MLP(J=6).
SSF1.2 reached the excellent solution 43 times out of 56 with probability 0.86,
while BPQ found the excellent solution 5 times out of 100 runs with probability
0.05. Moreover, many solutions of SSF1.2 are located close to the excellent
solution, while BPQ solutions are rather widely scattered. We see SSF1.2 found
the excellent solution much more stably.

Table 5 compares CPU time spent for learning Computer Hardware data.
SSF1.2 is 7.49 times faster than SSF1.0 mainly because the number of search
points is greatly reduced, as stated previously. For this data, SSF1.2 is 3.53



12 Seiya Satoh, Ryohei Nakano

0 5 10 15
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5
MLP(2)

E

solution id

(a) from MLP(1) to MLP(2)

0 5 10 15 20 25 30
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
MLP(3)

E

solution id

(b) from MLP(2) to MLP(3)

0 10 20 30 40
2.2

2.25

2.3

2.35

2.4

2.45
MLP(5)

E

solution id

(c) from MLP(4) to MLP(5)

0 10 20 30 40 50
2

2.05

2.1

2.15

2.2

2.25
MLP(6)

E

solution id

(d) from MLP(5) to MLP(6)

Fig. 3 Learning process of SSF1.2 for Computer Hardware data

times faster than BPQ. BP was quite slow and all runs stopped by reaching
the iteration upper bound.

Table 5 CPU time comparison for Computer Hardware data (sec)

J BP BPQ SSF1.0 SSF1.2
1 1355.73 2.54 2.22 0.15
2 1088.75 5.38 4.90 0.90
3 1097.04 11.41 18.90 2.53
4 1100.22 18.25 31.35 4.16
5 1110.52 28.75 51.61 7.76
6 1118.13 24.78 84.48 10.34

total 6870.39 91.13 193.45 25.84

Table 6 compares validation error using leave-one-out. SSF1.2 achieved
the best validation error at J=4. BP also supports J=4, although BPQ and
SSF1.0 indicate different J . The best validation error of SSF1.2 is better than
that of SSF1.0.



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 13

2.1 2.2 2.3 2.4 2.5 2.6
0

10

20

30

40

50

60

70

80

90

100
MLP(6)

fr
eq

ue
nc

y

E

(a) histogram of BPQ solutions

2.1 2.2 2.3 2.4 2.5 2.6
0

10

20

30

40

50

MLP(6)

fr
eq

ue
nc

y

E

(b) histogram of SSF1.2 solutions

Fig. 4 Histograms of solutions for Computer Hardware data

Table 6 Validation error comparison for Computer Hardware data

J BP BPQ SSF1.0 SSF1.2
1 9.2725 11.4714 11.4714 11.4714
2 6.2712 10.7275 7.0776 10.7275
3 6.1397 12.5215 9.7083 15.4312
4 5.3707 7.5827 11.6553 4.4005
5 5.4525 5.6972 11.4055 6.6768
6 5.8105 5.9416 5.9416 5.9924

4.3 Experiment of Polynomial-type MLP using Artificial Data

Here we consider the following multivariate polynomial.

y = 2 + 60 x3
1 x6

2x3 + 40 x8
4 x5 + 20 x6 x7

7 + 10 x2 x8
5 (26)

Values of each variable x1, x2, · · · , x14 were randomly selected from the range
(0, 1), while y values were generated following eq. (26) with the addition of
small Gaussian noise N (0, 0.012). Seven variables x8, · · · , x14 are irrelevant.
The sample size was 500 and the penalty coefficient was λ = 0.0001. The
maximum number of hidden units was Jmax = 6 to include the right J∗ = 4.

Figure 5 shows the result of SSF1.2. We ran MLP(J=1) learning twice and
obtained different solutions; the better was used for the next step. The result
for MLP(J=2) is shown in Fig. 5 (a). We have two search points for reducibility
mapping αβ search, and 28 points for reducibility mapping γ search. The
best solution was used for the next step. The results for MLP(J=3, 4, and
6) are shown in Fig. 5 (b), (c) and (d) respectively. The total number of
search points was 415 (=2+30+58+86+107+132). Since the number was 1615
(=100+101+202+303+404+505) for SSF1.0 [11], SSF1.2 reduced the total
number of search points by 3.89 (1615/415) times. The figures show the best
solution was frequently obtained from different splitting.

For comparison we ran BP and BPQ 100 times each. Table 7 compares
the best training error E for each J . SSF1.2 and SSF1.0 found exactly the
same solution for each J , greatly reducing the training error when J ≥ 4.



14 Seiya Satoh, Ryohei Nakano

0 5 10 15 20 25 30
1500

2000

2500

3000

3500

4000

4500

5000
MLP(2)

E

solution id

(a) from MLP(1) to MLP(2)

0 10 20 30 40 50
200

400

600

800

1000

1200

1400

1600

1800
MLP(3)

E

solution id

(b) from MLP(2) to MLP(3)

0 20 40 60 80
0

50

100

150

200

250
MLP(4)

E

solution id

(c) from MLP(3) to MLP(4)

0 20 40 60 80 100 120
0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235
MLP(6)

E

solution id

(d) from MLP(5) to MLP(6)

Fig. 5 Learning process of SSF1.2 for artificial polynomial data

BPQ greatly reduced the training error when J ≥ 5. BP stayed very poor
even when J increased. Moreover, SSF and BPQ showed monotonic decrease
for the increase of J ; however, BP did not.

Table 7 Best training error comparison for artificial polynomial data

J BP BPQ SSF1.0 SSF1.2
1 11281.7846 4951.5529 4951.5529 4951.5529
2 11325.9183 4120.1137 1731.6786 1731.6786
3 11549.9327 1370.8722 240.4430 240.4430
4 11142.7910 214.4255 0.3180 0.3180
5 11327.0229 0.3165 0.2292 0.2292
6 11455.7078 0.2278 0.1916 0.1916

Figure 6 compares histograms of BPQ and SSF1.2 solutions for MLP(J=4).
SSF1.2 reached the true solution 39 times out of 86 with probability 0.45,
while BPQ could not find the true solution for any 100 runs. Moreover, many
solutions of SSF1.2 are located quite close to the true solution, while BPQ



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 15

solutions are very widely distributed. Compared with BPQ, SSF1.2 found the
excellent solution much more stably.

0 2000 4000 6000 8000
0

10

20

30

40

50

60

70

80

90

100
MLP(4)

fr
eq

ue
nc

y

E

(a) histogram of BPQ solutions

0 2000 4000 6000 8000
0

10

20

30

40

50

60

70

80

MLP(4)

fr
eq

ue
nc

y

E

(b) histogram of SSF1.2 solutions

Fig. 6 Histograms of solutions for artificial polynomial data

Table 8 compares CPU time spent for learning artificial polynomial data.
SSF1.2 was 5.00 times faster than SSF1.0 due to the great reduction of the
number of search points. SSF1.2 is 4.47 times faster than BPQ for this data.
BP was fast but its training error was very poor, which means BP stopped in
an early stage because BP could not improve the training error any more.

Table 8 CPU time comparison for artificial polynomial data (sec)

J BP BPQ SSF1.0 SSF1.2
1 166.19 72.66 73.19 0.89
2 123.93 139.83 16.36 6.56
3 55.96 191.57 46.14 15.66
4 59.26 205.57 85.34 29.21
5 44.13 206.35 422.21 67.29
6 37.04 237.00 534.76 115.86

total 486.50 1052.97 1178.01 235.48

Table 9 compares validation error using leave-one-out. SSF1.2 and SSF1.0
showed the same performance reducing greatly at more than J ≥ 4. Both SSF
achieved the best validation error at J=4, which is correct. BPQ indicated
wrong J=5 and validation error of BP remained rather poor.

4.4 Experiment of Polynomial-type MLP using Real Data

As real data for polynomial-type MLP we used White Wine data from UCI
ML Repository. The number of explanatory variables is 10, and the sample
size is 4,998. The penalty coefficient was λ = 0.001, and the maximum number
of hidden units was Jmax = 6.



16 Seiya Satoh, Ryohei Nakano

Table 9 Validation error comparison for artificial polynomial data

J BP BPQ SSF1.0 SSF1.2
1 12404.4112 5331.5387 5331.5387 5331.5387
2 12404.5434 4678.9544 2299.5675 2299.5675
3 12401.5252 2438.7316 462.4028 462.4028
4 12413.3403 511.3041 0.0434 0.0434
5 12416.8616 0.0540 0.0533 0.0533
6 12403.2163 0.0803 0.0646 0.0646

0 5 10 15 20 25
1610

1620

1630

1640

1650

1660

1670

1680
MLP(2)

E

solution id

(a) from MLP(1) to MLP(2)

0 10 20 30 40
1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595
MLP(3)

E

solution id

(b) from MLP(2) to MLP(3)

0 10 20 30 40 50 60
1522

1524

1526

1528

1530

1532

1534

1536
MLP(4)

E

solution id

(c) from MLP(3) to MLP(4)

0 20 40 60 80 100
1474

1476

1478

1480

1482

1484

1486

1488

1490

1492

1494
MLP(6)

E

solution id

(d) from MLP(5) to MLP(6)

Fig. 7 Learning process of SSF1.2 for white wine data

Figure 7 shows the result of SSF1.2. We ran MLP(J=1) learning twice and
obtained the same solution, which was used for the next step. The result for
MLP(J=2) is shown in Fig. 7 (a). We have two search points for reducibility
mapping αβ search, and 22 points for γ search. Here we have three solutions
and the best was used for the next step. The results for MLP(J=3, 4, and
6) are shown in Fig. 7 (b), (c), and (d) respectively. The total number of
search points was 324 (=2+24+46+65+85+102). Since the number was 1615
(=100+101+202+303+404+505) for SSF1.0 [11], SSF1.2 reduced the total
number of search points by 4.98 (=1615/324) times. We see the best solution



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 17

was obtained from different splitting. For MLP(J=4), 21 search points out of
65 converged to much the same excellent solution.

For comparison we ran BP and BPQ 100 times each. Table 10 compares the
best training error E for each J . SSF and BPQ achieved much the same good
training error for most J , while BP improved training error only gradually as
J increased. Moreover, each method showed preferable monotonic decrease as
J increased.

Table 10 Best training error comparison for white wine data

J BP BPQ SSF1.0 SSF1.2
1 1793.83 1725.74 1725.74 1725.74
2 1722.96 1618.88 1618.88 1618.88
3 1699.03 1549.89 1549.89 1549.89
4 1689.21 1522.49 1523.56 1523.56
5 1680.47 1498.08 1498.86 1498.86
6 1665.78 1478.84 1474.93 1474.93

Figure 8 compares histograms of BPQ and SSF1.2 solutions for MLP(J=4).
SSF1.2 reached the excellent solution 21 times out of 65 with probability 0.32,
while BPQ did only once out of 100 runs with probability 0.01. Moreover,
many solutions of SSF1.2 are located close to the excellent solution, while BPQ
solutions scatter more widely. We see SSF1.2 found the excellent solution 32
times more stably.

1540 1560 1580 1600 1620
0

10

20

30

40

50

60

70

80

90

100
MLP(4)

fr
eq

ue
nc

y

E

(a) histogram of BPQ solutions

1540 1560 1580 1600 1620
0

10

20

30

40

50

60

MLP(4)

fr
eq

ue
nc

y

E

(b) histogram of SSF1.2 solutions

Fig. 8 Histograms of solutions for white wine data

Table 11 compares CPU time spent for learning White Wine data. SSF1.2
is 4.96 times faster than SSF1.0 mainly because the number of search points
is greatly reduced. For this data, SSF1.2 is 1.55 times faster than BPQ. BP
was slow and most runs stopped by reaching the iteration upper bound.



18 Seiya Satoh, Ryohei Nakano

Table 11 CPU time comparison for ball bearings data (sec)

J BP BPQ SSF1.0 SSF1.2
1 996.41 23.41 23.36 0.48
2 1000.53 84.80 90.43 22.60
3 1021.26 139.71 275.37 74.72
4 1015.99 200.62 390.91 84.17
5 955.13 258.58 977.96 224.26
6 927.28 235.53 1249.01 200.53

total 5916.58 942.66 3007.05 606.76

Table 12 compares validation error using 10-fold cross-validation. SSF and
BPQ achieved the best validation error at J=4, while BP supports J=6. The
best validation error of SSF1.2 is the same as that of SSF1.0.

Table 12 Validation error comparison for White Wine data

J BP BPQ SSF1.0 SSF1.2
1 1824.71 1739.79 1739.79 1739.79
2 1736.97 1655.12 1655.12 1655.12
3 1755.98 1611.81 1611.81 1611.81
4 1750.16 1569.16 1577.01 1577.01
5 1736.80 3799.64 4276.88 4276.87
6 1723.39 4356.03 5083.01 5083.05

5 Conclusion

This paper proposed a new MLP learning method called SSF1.2, which makes
good use of the whole singular regions. It begins with MLP(J=1) and gradually
increases J , the number of hidden units, one by one to successively find ex-
cellent solutions for each J . Our experiments using sigmoidal and polynomial-
type MLP showed the following. Compared with the original SSF1.0, SSF1.2
is surely much faster and may improve solution quality as well. Moreover,
compared with existing methods such as BP or quasi-Newton method, SSF1.2
more stably and more efficiently found excellent solutions commensurate with
each J . Successive solutions obtained by SSF1.2 were useful for MLP model
selection. In the future we plan to improve our method by applying it to
data requiring heavy computation or having larger data size or different types
of nonlinearity. Additionally, we will investigate model selection for singular
models since successive excellent solutions for each J and learning processes
can be used for such model selection.

Acknowledgments.

This work was supported by Grants-in-Aid for Scientific Research (C) 22500212
and Chubu University Grant 24IS27A.



Fast and Stable Learning Utilizing Singular Regions of Multilayer Perceptron 19

References

1. Amari S (1998) Natural gradient works efficiently in learning. Neural Comput, 10(2):
251–276

2. Amari S, Park H, Fukumizu K (2000) Adaptive method of realizing natural gradient
learning for multilayer perceptrons. Neural Comput, 12(6): 1399–1409

3. Cousseau F, Oseki T, Amari S (2008) Dynamics of learning in multilayer perceptrons
near singularities. IEEE Trans Neural Networks, 19(8): 1313–1328

4. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edition. John Wiley &
Sons, Inc., New York

5. Fukumizu K, Amari S (2000) Local minima and plateaus in hierarchical structure of
multilayer perceptrons. Neural Networks, 1(3): 317–327

6. Hamey LGC (1998) XOR has no local minima: a case study in neural network error
surface. Neural Networks, 11(4): 669–681

7. Hecht-Nielsen H (1990) Neurocomputing. Addison-Wesley Publishing Company, Read-
ing, Massachusetts

8. Minnett RCJ, Smith AT, Lennon Jr.WC, Hecht-Nielsen R (2011) Neural network to-
mography: network replication from output surface geometry. Neural Networks, 24(5):
484–492

9. Luenberger DG (1984) Linear and nonlinear programming. Addison-Wesley Publishing
Company, Reading, Massachusetts

10. Nakano R, Saito K (2002) Discovering polynomials to fit multivariate data having nu-
meric and nominal variables. LNAI, vol.2281, pp.482–493

11. Nakano R, Satoh S, Ohwaki T (2011) Learning method utilizing singular region of
multilayer perceptron. In: Proceedings of the 3rd International Conference on Neural
Computation Theory and Applications, Paris, pp.106–111

12. Saito K, Nakano R (1997) Partial BFGS update and efficient step-length calculation for
three-layer neural networks. Neural Comput, 9(1): 239–257

13. Sussmann HJ (1992) Uniqueness of the weights for minimal feedforward nets with a
given input-output map. Neural Networks, 5(4): 589–593

14. Wan W (2006) Implementing online natural gradient learning: problems and solutions.
IEEE Trans Neural Networks, 17(2): 317–329

15. Watanabe S (2008) A formula of equations of states in singular learning machines.
In: Proceedings of the International Joint Conference on Neural Networks 2008, Hong
Kong, pp.2099–2106

16. Watanabe S (2009) Algebraic geometry and statistical learning theory. Cambridge Uni-
versity Press, Cambridge, UK


