
A Yet Faster Version of
Complex-valued Multilayer Perceptron Learning

Using Singular Regions and Search Pruning

Seiya Satoh1 and Ryohei Nakano1

1Department of Computer Science, Chubu University,
1200 Matsumoto-cho, Kasugai 487-8501, Japan

tp13801-3493@sti.chubu.ac.jp, nakano@cs.chubu.ac.jp

Keywords:
Complex-valued multilayer perceptron, Learning method, Singular region, Search pruning.

Abstract:
In the search space of a complex-valued multilayer perceptron having J hidden units, C-MLP(J),
there are singular regions, where the gradient is zero. Although singular regions cause serious
stagnation of learning, there exist narrow descending paths from the regions. Based on this ob-
servation, a completely new learning method called C-SSF (complex singularity stairs following)
1.0 was proposed, which utilizes singular regions to generate starting points of C-MLP(J) search.
Although C-SSF1.0 finds excellent solutions of successive C-MLPs, it takes long CPU time be-
cause the number of searches increases as J gets larger. To deal with this problem, C-SSF1.1 was
proposed, a few times faster by the introduction of search pruning, but it still remained unsatis-
factory. In this paper we propose a yet faster C-SSF1.3, going further with search pruning, and
then evaluate the method in terms of solution quality and processing time.

1 INTRODUCTION

Complex-valued neural networks (Hirose,
2012) have the attractive features real-valued
ones don’t have. A complex-valued multilayer
perceptron (C-MLP) can naturally represent a
periodic and/or unbounded function, which is not
easy at all for a real-valued MLP.

Among learning methods of C-MLPs, complex
back propagation (C-BP) (Kim and Guest, 1990;
Leung and Haykin, 1991) is basic and well-known.
A higher-order learning method was proposed
to get better performance (Amin et al., 2011).
Complex Broyden-Fletcher-Goldfarb-Shanno (C-
BFGS) (Suzumura and Nakano, 2013) finds nice
solutions after many independent runs.

There exist flat subspaces called singular re-
gions in the C-MLP search space (Nitta, 2013),
as is the case with a real-valued MLP (Fukumizu
and Amari, 2000). Singular regions have been
avoided (Amari, 1998) because they cause serious
stagnation of learning. However, they can be uti-
lized as excellent initial points when we perform
search for successive numbers of hidden units.

This viewpoint led to the invention of a com-
pletely new learning method. Actually, a method
called SSF (Singularity Stairs Following) (Satoh
and Nakano, 2013) was proposed for real-valued
MLPs, utilizing reducibility mapping (Fukumizu
and Amari, 2000) and eigenvector descent (Satoh
and Nakano, 2012). It stably and successively
found excellent solutions.

Recently a complex version of SSF, called C-
SSF 1.0, was proposed (Satoh and Nakano, 2014),
utilizing complex reducibility mapping (Nitta,
2004), eigenvector descent, and C-BFGS. It sta-
bly found excellent solutions in C-MLP search
space, whose solution quality was better than C-
BFGS. However, it took several times longer than
C-BFGS. To make C-SSF1.0 faster, C-SSF1.1
(Satoh and Nakano, 2015) was proposed by intro-
ducing search pruning. It ran a few times faster
than C-SSF1.0 without losing the superb solution
quality, but still remained unsatisfactory in pro-
cessing time.

This paper proposes a yet faster version of
C-SSF called C-SSF1.3 by introducing two con-
trivances: putting a ceiling on the number of

searches and utilizing multiple best solutions to
generate starting points. Our experiments com-
pare solution quality and processing time of the
proposed C-SSF1.3 with those of C-SSF1.1, C-
BP, and C-BFGS.

2 SINGULAR REGIONS

This section explains how singular regions are
generated. Consider a complex-valued MLP with
J hidden units, C-MLP(J), whose output is fJ .

fJ (x; θJ) = w0 +
J∑

j=1

wjzj , zj ≡ g(wT
j x) (1)

Here θJ = {w0, wj ,wj , j = 1, · · · , J} is a pa-
rameter vector. Input x, weights wj , wj , output
fJ , and teacher signal y are all complex. Given
data {(xµ, yµ), µ = 1, · · · , N}, we want to find
θJ minimizing the following.

EJ =
N∑

µ=1

δµδµ, δµ ≡ fJ(xµ; θJ)− yµ (2)

Next, consider C-MLP(J−1) with J−1 hidden
units. Its output is fJ−1.

fJ−1(x; θJ−1) = u0+
J−1∑
j=1

ujvj , vj ≡ g(uT
j x) (3)

Here θJ−1 = {u0, uj , uj , j = 1, · · · , J − 1} is a
parameter vector of C-MLP(J−1), and let the
optimal θJ−1 be θ̂J−1.

Sussmann (Sussmann, 1992) pointed out the
uniqueness and reducibility of real-valued MLPs.
Much the same uniqueness and reducibility hold
for complex-valued MLPs (Nitta, 2004). Now
consider three reducibility mappings α, β, and
γ; then, apply α, β, and γ to the optimal θ̂J−1

to get Θ̂
α

J , Θ̂
β

J , and Θ̂
γ

J respectively.

θ̂J−1
α−→ Θ̂

α

J , θ̂J−1
β−→ Θ̂

β

J , θ̂J−1
γ−→ Θ̂

γ

J

Θ̂
α

J ≡ {θJ |w0 = û0, w1 =0,

wj = ûj−1, wj = ûj−1, j =2, · · · , J}(4)

Θ̂
β

J ≡ {θJ |w0+w1g(w10)= û0,

w1 =[w10, 0, · · · , 0]T , wj = ûj−1,

wj = ûj−1, j =2, · · · , J} (5)

Θ̂
γ

J ≡ {θJ |w0 = û0, w1+wm = ûm−1,

w1 =wm = ûm−1, wj = ûj−1,

wj = ûj−1, j∈{2, · · · , J}\{m}} (6)

Now, we have the following singular regions.
(1) The intersection of Θ̂

α

J and Θ̂
β

J forms singu-

lar region Θ̂
αβ

J , where only w10 is free. In the
singular region the following hold:

w0 = û0, w1 = 0, w1 = [w10, 0, · · · , 0]T ,

wj = ûj−1, wj = ûj−1, j = 2, · · · , J.

(2) Θ̂
γ

J is a singular region, where the following
holds: w1 + wm = ûm−1, m=2, · · · , J .

After finishing learning of C-MLP(J−1), C-
SSF starts learning of C-MLP(J) from points in
the singular region of C-MLP(J). Since the gradi-
ent is zero all over the singular region, the gradi-
ent won’t give us any information in which direc-
tion to go. Thus we employ eigenvector descent
(Satoh and Nakano, 2012). Picking up a negative
eigenvalue, we have two search directions based
on its eigenvector.

3 C-SSF

This section describes the former versions and
the proposed version of C-SSF (Complex Singu-
larity Stairs Following). C-SSF learns C-MLPs.

3.1 Basic Framework

The origin of C-SSF is C-SSF1.0 (Satoh and
Nakano, 2014). C-SSF starts search from C-
MLP(J=1) and then gradually increases the
number of hidden units J one by one until
Jmax. When searching C-MLP(J), the method
applies reducibility mapping to the optimum of
C-MLP(J−1) to get two kinds of singular regions

Θ̂
αβ

J and Θ̂
γ

J . When starting search from the
singular region, the method employs eigenvector
descent (Satoh and Nakano, 2012), which finds
descending directions, and from then on employs
complex BFGS (C-BFGS). The general flow of C-
SSF1.0 is given below. Let {w(J)

0 , w
(J)
j , w

(J)
j , j =

1, · · · , J} denote parameters of C-MLP(J).

Here we give notes on the implementation
used in our experiments. In Algorithm 1, p in
steps 1.1 and 2.1.1 is free and was set to −1, 0,
and 1. Moreover, q in step 2.2.1 is also free and
was set to 0.5, 1.0, and 1.5, which correspond to
internal division, boundary, and external division
respectively. In Algorithm 2, the golden section
search (Luenberger, 1984) was employed as a line
search to find the suitable step length.

Algorithm 1 : C-SSF Method (ver 1.0 or 1.1)
step 1. Search for MLP(1)

1.1 Set an initial point on Θ̂
αβ

1 :
w

(1)
0 ← y, w

(1)
1 ← 0, w

(1)
1 ← [p, 0, · · · , 0]T

1.2 Search from singular region
1.3 Store the best as ŵ

(1)
0 , ŵ

(1)
1 , ŵ

(1)
1 ; J ← 2.

step 2. Search for MLP(J)
while J ≤ Jmax do

2.1 Search from Θ̂
αβ

J :

2.1.1 Set an initial point on Θ̂
αβ

J

2.1.2 Search from singular region
2.2 Search from Θ̂

γ

J :
for m = 2, · · · , J do

2.2.1 Set an initial point on Θ̂
γ

J

2.2.2 Search from singular region
end for
2.3 Get the best among all solutions obtained
in steps 2.1 and 2.2, and store it as ŵ

(J)
0 ,

ŵ
(J)
j , ŵ

(J)
j , j = 1, · · · , J . Then, J ← J + 1.

end while

Algorithm 2 : Search from singular region
step 1. Calculate the Hessian and get all the
negative eigenvalues and their eigenvectors.
step 2.
for each negative eigenvalue with its eigenvec-
tor u do

2.1 Perform a line search in the direction of
u, start search using C-BFGS afterward, and
keep the solution.
2.2 Perform a line search in the direction of
−u, start search using C-BFGS afterward,
and keep the solution.

end for

Algorithm 3 : Set an initial point on Θ̂
αβ

J

w
(J)
0 ← ŵ

(J−1)
0 ,

w
(J)
1 ←0, w

(J)
1 ← [p, 0, · · · , 0]T ,

w
(J)
j ← ŵ

(J−1)
j−1 , w

(J)
j ←ŵ

(J−1)
j−1 , j =2, · · · , J

C-SSF has the following characteristics (Satoh
and Nakano, 2014; Satoh and Nakano, 2015).
(1) The excellent solution of C-MLP(J) will be
obtained one after another for J=1,· · · ,Jmax. C-
SSF guarantees that training error of C-MLP(J)
is smaller than that of C-MLP(J−1) since C-SSF
descends in C-MLP(J) search space from the sin-

Algorithm 4 : Set an initial point on Θ̂
γ

J

w
(J)
0 ← ŵ

(J−1)
0 ,

w
(J)
1 ← q × ŵ

(J−1)
m−1 , w

(J)
1 ← ŵ

(J−1)
m−1 ,

w
(J)
m ← (1− q)× ŵ

(J−1)
m−1 , w

(J)
m ← ŵ

(J−1)
m−1 ,

w
(J)
j ← ŵ

(J−1)
j−1 , w

(J)
j ←ŵ

(J−1)
j−1 ,

j ∈ {2, · · · , J} \ {m}

gular regions corresponding to the optimum of C-
MLP(J−1). This monotonic feature will be quite
useful for model selection. However, such mono-
tonic decrease of training error is not guaranteed
for existing methods.
(2) C-SSF runs without using random number,
meaning it always finds the same set of solutions.

3.2 Search Pruning

C-SSF1.0 stably found excellent solutions, bet-
ter than C-BFGS. However, it took several times
longer than C-BFGS because the number of
searches got larger and larger as the number of
hidden units J increased. Thus, a faster ver-
sion C-SSF1.1 (Satoh and Nakano, 2015) was pro-
posed by introducing search pruning.

The general flow of C-SSF1.1 is the same as
Algorithm 1 since search pruning is embedded in
search using C-BFGS at steps 2.1 and 2.2 of Al-
gorithm 2. Although search pruning is explained
in detail in (Satoh and Nakano, 2015), the main
point is shown below.

Let θ(t) and φ(τ) be a current search point and
a point stored during a previous search respec-
tively. Since d = (· · · , dm, · · ·)T is a normalizing
vector, v(t) and r(τ) are normalized points. The
normalization is introduced to prevent any weight
having a large absolute value from influencing the
decision too much.

dm ←

{ ∣∣∣ 1

θ
(t−1)
m

∣∣∣ (1 < |θ(t−1)
m |)

(|θ(t−1)
m | ≤ 1)

(7)

v(t) ← diag(d) θ(t) (8)

v(t−1) ← diag(d) θ(t−1) (9)

r(τ) ← diag(d) φ(τ), τ = 1, · · · , T (10)

Here m = 1,· · · , 2M , where M is the number of
complex weights. Let T be the number of points
stored so far, and diag(d) is a diagonal matrix
whose diagonal elements are d.

See Figure 1. Now consider a line L1 through
two points r(τ−1) and r(τ), and a line L2 through
two points v(t−1) and v(t). Then consider a line

 r(τ)

 v(t) r(τ−1)

 l
 v(t−1)

 v(t−2)

 r(τ−2)

 r(τ−3)

 r(τ−4)

Figure 1: Conceptual Diagram of Search Pruning of
C-SSF1.1

L3 perpendicular to each of L1 and L2. Note
that line L3 includes the shortest line segment
` between L1 and L2. Based on this `, we de-
cide whether the current search route is to merge
onto a previous search route. We can calculate `,
which can be represented as below.

` = (r(τ−1) + a1∆r(τ))− (v(t−1) + a2∆v(t)) (11)

∆r(τ) ≡ r(τ) − r(τ−1), ∆v(t) ≡ v(t) − v(t−1)

By solving mina `T`, unknown a1 and a2 can be
determined. The following are the condition for `
to start from a point between v(t−1) and v(t) and
to end at a point between r(τ−1) and r(τ).

0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 1 (12)

If ` does not satisfy the condition eq.(12) for
any τ = 1, · · · , T , we consider the current search
route does not merge onto any previous route. If
the condition holds for a certain τ , however, we
check whether the current search is to be pruned.
The current search is pruned if the absolute value
of each element of ` is smaller than predefined ε.

Here implementation details in our experi-
ments are described. Checking of search pruning
and storing of current points are carried out at
intervals of 100 search steps. Moreover, we set
ε = 0.3 for a threshold of search route proximity.

3.3 Proposed Method: C-SSF1.3

C-SSF1.1 ran a few times faster than C-SSF1.0
without losing the excellent solution quality, but
still remained unsatisfactory in processing time
for a larger model. C-SSF1.1 needed to be made
even faster; thus, this paper proposes a yet faster
version C-SSF1.3.

Since the key point is to decrease the number
of searches, we decided to put a ceiling Smax on
the number; however, we should not lose excellent
solutions by doing so. All of the limited number
Smax of searches should start in the promising
directions. Note that the decision whether or not
this direction will lead to an excellent solution
should be made at a starting point. We assumed
the larger convex curvature at a starting point,
the better solution at the end of the search. See
Figure 2.

E

λ
1
 (>0)

λ
2
 (=0)

λ
3
 (>λ

4
)

λ
4
 (<λ

3
)

Figure 2: Conceptual diagram of eigenvectors at a
point in a singular region.

To implement this, we calculate eigenvalues
of all initial points on the singular regions Θ̂

αβ

J

and Θ̂
γ

J . Then, we pick up the limited number
of eigenvalues in ascending order, and perform
search using their eigenvectors.

One more contrivance was introduced into C-
SSF1.3. When C-SSF starts search at one step
larger C-MLP(J), only the best solution of C-
MLP(J−1) is used to create the singular regions.
Recently we found that the best solution of C-
MLP(J−1) does not always lead to the best so-
lution of C-MLP(J) especially for a very small
J . Therefore, we utilize the best R solutions of
C-MLP(J−1) to create the singular regions of C-
MLP(J) when J ≤ JR. Note that when J ≤ JR,
the ceiling on the number of searches is not put.
The increase of processing load due to additional
searches will be trivial because J is very small.

In the following experiments, C-SSF1.3 sys-
tem parameters were set as Smax= 100, JR = 3,
and R = 3.

4 EXPERIMENTS

The proposed C-SSF1.3 was evaluated using
two artificial data sets. That is, the performance
of C-SSF1.3 was compared with former version C-
SSF1.1, batch-type complex BP with line search
(C-BP), and complex BFGS (C-BFGS).

In a C-MLP an activation function plays an
important role. We employed the following σ(z)
(Kim and Guest, 1990; Leung and Haykin, 1991)
for a hidden unit. When z is a complex number
(z = a + i b), σ(z) is periodic and unbounded.

σ(z) =
1

1 + e−z

=
1 + e−a cos b + ie−a sin b

1 + 2e−a cos b + e−2a
(13)

Real and imaginary parts of initial weights for
C-BP and C-BFGS were randomly selected from
the range (−1, 1). For each J , C-BP or C-BFGS
was performed 100 times changing initial weights.

Each run of any learning method was ter-
minated when the number of sweeps exceeded
10,000 or the step length got smaller than 10−16.

4.1 Experiments using Artificial
Data 1

Artificial data 1 was generated using a C-MLP
having the following weights with J = 4. A
PC with Intel(R) Xeon(R) E5-2687W 3.10GHz
and 32GB memory was used together with MAT-
LAB2014a.
(w0, w1, w2, w3, w4)
= (−3 + 1i,−1 + 1i, 1 + 1i, 0 + 5i, 5− 4i),
(w1,w2, w3, w4)

=

−2 + 3i 0− 5i −4− 5i −1 + 1i

4 + 0i −2 + 2i −1 + 2i −2 + 2i
−3 + 1i 0− 2i −4− 4i 4 + 1i

4 + 4i 1 + 4i 3 + 0i −4− 1i
0− 5i 5 + 3i −1− 5i 3− 1i
−5− 2i −4 + 2i 3− 5i 5 + 4i

(14)

The real and imaginary parts of input xk were
randomly selected from the range (0, 1). Teacher
signal yµ was generated by adding small Gaus-
sian noise N (0, 0.012) to both real and imaginary
parts of the output. The size of training data
was 500 (N = 500), and the maximum number of
hidden units was set to 6 (Jmax = 6). Test data
of 1,000 data points without noise was generated
independently of training data.

Figures 3 (a) and (b) show minimum train-
ing error and the corresponding test error respec-
tively. C-BP could not decrease training error

and showed very poor generalization. C-BFGS
basically decreased training error as J got larger;
however, its test error showed the slight up-and-
down movement. Both fast versions of C-SSF
showed much the same results for training and
test, much better than those of C-BFGS for J ≥
4. Note also that C-SSF monotonically decreased
training error. Both versions of C-SSF and C-
BFGS minimized test error at J = 4, which is
correct.

1 2 3 4 5 6
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

 T
ra

in
in

g
er

ro
r

J

C−BP
C−BFGS
C−SSF1.1
C−SSF1.3

(a) Training error.

1 2 3 4 5 6
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 T
es

t e
rr

or

J

C−BP
C−BFGS
C−SSF1.1
C−SSF1.3

(b) Test error.

Figure 3: Training and test errors for artificial data
1.

Table 1 shows the number of searches for arti-
ficial data 1. The numbers of each C-SSF include
the ones of pruned searches. Note that the num-
bers of each C-SSF for J = 2 or 3 were larger than
100 because multiple best solutions were utilized
to create starting points. The total number of C-
SSF1.3 was 29 % (0.71=791/1108) smaller than
that of C-SSF1.1.

Table 2 shows CPU time required by each
method for artificial data 1. C-BP spent the

Table 1: Numbers of searches for artificial data 1.

J C-BP C-BFGS C-SSF C-SSF
1.1 1.3

1 100 100 38 38
2 100 100 132 132
3 100 100 321 321
4 100 100 160 100
5 100 100 220 100
6 100 100 237 100

total 600 600 1108 791

longest time 443 minutes in total, which may
mean it easily got stuck in poor local minima,
and could not escape from them. C-SSF1.3 was
1.23 (=742/602) times faster than C-SSF1.1, and
C-BFGS was in the middle of the two. CPU time
required by C-BFGS increased as J got larger,
while CPU time of C-SSF at J = 3 was a bit large
due to using multiple best solutions for creating
starting points.

Table 2: CPU time for artificial data 1. (hr:min:sec)

J C-BP C-BFGS C-SSF C-SSF
1.1 1.3

1 0:35:38 0:00:30 0:00:13 0:00:13
2 0:53:57 0:00:53 0:00:39 0:00:39
3 1:10:27 0:01:08 0:03:09 0:03:09
4 1:39:13 0:02:18 0:01:19 0:01:00
5 1:22:45 0:02:35 0:02:56 0:02:07
6 1:41:25 0:03:54 0:04:06 0:02:53

total 7:23:24 0:11:19 0:12:22 0:10:02

4.2 Experiments using Artificial
Data 2

Artificial data 2 was generated using the follow-
ing logarithmic spirals. How flexibly C-MLP can
represent this heavily swirling function was eval-
uated. XPS 8300 with Intel(R) Core i7-2600
3.40GHz and 12GB memory was used together
with MATLAB2014a.

y = {0.001e0.1φ + 2.5e−0.1φ + 0.1e0.05φ}
{e2iφ + e5i(φ+π/3) + e12iφ + e15iφ},
where φ = 2πx (15)

The real part of input xµ was randomly selected
from the range (0, 10), and the imaginary part
was set to zero. Teacher signal yµ was gener-
ated by adding small Gaussian noise N (0, 0.012)

2 4 6 8 10 12 14 16
10

−1

10
0

10
1

10
2

10
3

10
4

 T
ra

in
in

g
er

ro
r

J

C−BP
C−BFGS
C−SSF1.1
C−SSF1.3

(a) Training error.

2 4 6 8 10 12 14 16
10

1

10
2

10
3

10
4

10
5

10
6

 T
es

t e
rr

or

J

C−BP
C−BFGS
C−SSF1.1
C−SSF1.3

(b) Test error.

Figure 4: Training and test errors for artificial data
2.

to both real and imaginary parts of the out-
put. The size of training data was 1,000 (N =
1,000), and the maximum number of hidden units
was set to 16 (Jmax = 16). Test data of 1,000
data points without noise was generated from the
range (10, 13) of input x, outside of the range of
training.

Figures 4 (a) and (b) show minimum train-
ing error and the corresponding test error respec-
tively. Again C-BP could hardly decrease train-
ing error and showed very poor generalization.
C-BFGS basically decreased training error as J
increased, but fluctuated for J ≥ 12. Both ver-
sions of C-SSF showed almost equivalent results
for training and test, monotonically decreasing
training error. Both C-SSF versions indicate J
= 12 or 13 may be the best model.

Table 3 shows the number of searches of each
method for artificial data 2. The numbers of each
C-SSF include the ones of pruned searches. The

numbers of each C-SSF for J = 3 were larger than
100 because multiple best solutions were utilized
for J ≤ 3. The total number of C-SSF1.3 was
one-fifth (0.20=1509/7409) of that of C-SSF1.1.

Table 3: Numbers of searches for artificial data 2.

J C-BP C-BFGS C-SSF C-SSF
1.1 1.3

1 100 100 16 16
2 100 100 81 81
3 100 100 162 162
4 100 100 70 70
5 100 100 80 80
6 100 100 177 100
7 100 100 190 100
8 100 100 269 100
9 100 100 568 100
10 100 100 306 100
11 100 100 593 100
12 100 100 583 100
13 100 100 1042 100
14 100 100 770 100
15 100 100 1664 100
16 100 100 838 100

total 1600 1600 7409 1509

Table 4 shows CPU time required by each
method for artificial data 2. C-BP spent the
longest CPU time about 41 hours in total. CPU
time of C-BFGS gradually increased as J got
larger, spending 3.6 hours in total. C-SSF1.3 was
the fastest, 3.2 times (=297/94) faster than C-
SSF1.1, and 2.3 times (=215/94) faster than C-
BFGS. Note that C-SSF1.3 spent about 6 or 7
minutes for each J (≥ 6) except J=13, while C-
SSF1.1 showed a tendency to require more CPU
time as J got larger.

Figures 5 (a), (b), (c) and (d) show the out-
put of the best models learned by each learning
method. The best model means C-MLP(J) min-
imizing test error; J=15 for C-BP and C-BFGS,
J=13 for C-SSF1.1, and J=12 for C-SSF1.3. C-
BP could hardly fit the function for the range
(0, 10) and showed very poor generalization for
the range (10, 13). C-BFGS nicely fitted the func-
tion in the range (0, 10), but the amplitude fitting
got slightly deviated for the range (10, 13). Both
versions of C-SSF very nicely fitted the swirling
function all over the range (0, 13) showing excel-
lent generalization.

Table 4: CPU time for artificial data 2. (hr:min:sec)

J C-BP C-BFGS C-SSF C-SSF
1.1 1.3

1 0:38:58 0:01:03 0:00:10 0:00:10
2 1:11:01 0:01:46 0:02:16 0:02:18
3 1:12:26 0:03:38 0:05:27 0:05:33
4 1:29:03 0:04:47 0:03:00 0:03:07
5 1:39:42 0:06:10 0:03:17 0:03:25
6 1:55:47 0:07:22 0:08:27 0:07:08
7 2:11:15 0:09:22 0:09:16 0:06:26
8 2:22:59 0:11:08 0:14:34 0:07:46
9 2:33:36 0:13:54 0:22:46 0:06:55
10 2:54:17 0:15:51 0:13:31 0:06:27
11 3:04:18 0:18:23 0:30:37 0:07:39
12 3:20:16 0:19:35 0:24:39 0:07:27
13 3:49:26 0:22:03 0:38:24 0:09:32
14 4:00:40 0:26:08 0:24:32 0:06:28
15 4:12:06 0:25:33 1:04:22 0:06:42
16 4:33:26 0:28:11 0:31:31 0:07:02

total 41:09:15 3:34:55 4:56:48 1:34:04

5 CONCLUSION

C-SSF is a completely new learning method
for a complex-valued MLP, making good use of
singular regions to stably and successively find
excellent solutions. We proposed C-SSF1.3 which
puts a ceiling on the search load for larger mod-
els and utilizes multiple best solutions for smaller
models. Although the former versions of C-SSF
were rather slow, the proposed C-SSF1.3 ran very
fast without losing excellent solution quality. It
ran 3.2 times faster than C-SSF1.1, 2.3 times
faster than C-BFGS for a larger problem. In the
future we plan to apply the method to challenging
applications.

ACKNOWLEDGEMENTS

This work was supported by Grants-in-Aid for
Scientific Research (C) 25330294 and Chubu Uni-
versity Grant 26IS19A.

REFERENCES

S. Amari: Natural gradient works efficiently in learn-
ing, Neural Comput., 10(2), 251/276 (1998)

M.F. Amin and et al.: Wirtinger calculus based gradi-
ent descent and Levenberg-Marquardt learning
algorithms in complex-valued neural networks,
Proc. ICONIP, 550/559 (2011)

K. Fukumizu and S. Amari: Local minima and
plateaus in hierarchical structure of multilayer
perceptrons, Neural Networks, 13(3), 317/327
(2000)

A. Hirose: Complex-Valued Neural Networks, 2nd
ed., Springer-Verlag, Berlin Heidelberg (2012)

M.S. Kim and C.C. Guest: Modification of back-
propagation networks for complex-valued signal
processing in frequency domain, Proc. IJCNN,
3, 27/31 (1990)

H. Leung and S. Haykin: The complex backpropa-
gation algorithm, IEEE Trans. Signal Process.,
39(9), 2101/2104 (1991)

D.G. Luenberger: Linear and nonlinear program-
ming, Addison-Wesley Publishing Company,
Reading, Massachusetts (1984)

T. Nitta: Reducibility of the complex-valued neural
network, Neural Information Processing - Let-
ters and Reviews, 2(3), 53/56 (2004)

T. Nitta: Local minima in hierarchical structures
of complex-valued neural networks, Neural Net-
works, 43, 1/7 (2013)

S. Satoh and R. Nakano: Eigen vector de-
scent and line search for multilayer perceptron,
Proc. IAENG Int. Conf. on AI & Applications
(ICAIA’12), 1 1/6 (2012)

S. Satoh and R. Nakano: Fast and stable learning uti-
lizing singular regions of multilayer perceptron,
Neural Processing Letters, 38(2), 99/115 (2013)

S. Satoh, and R. Nakano: Complex-valued multilayer
perceptron search utilizing singular regions of
complex-valued parameter space, Proc. ICANN,
315/322 (2014)

S. Satoh, and R. Nakano: Complex-valued multilayer
perceptron learning using singular regions and
search pruning, Proc. IJCNN (to be published)
(2015)

H.J. Sussmann: Uniqueness of the weights for mini-
mal feedforward nets with a given input-output
map, Neural Networks, 5(4), 589/593 (1992)

S. Suzumura and R. Nakano: Complex-valued BFGS
method for complex-valued neural networks, IE-
ICE Trans. on Information & Systems, J96-
D(3), 423/431 (in Japanese) (2013)

−20
0

20

−20020
0

5

10

 Re(y) Im(y)

x f
Training data
Test data

(a) C-BP(J = 15)

−20
0

20

−20020
0

5

10

 Re(y) Im(y)

x f
Training data
Test data

(b) C-BFGS(J = 15)

−20
0

20

−20020
0

5

10

 Re(y) Im(y)

x f
Training data
Test data

(c) C-SSF1.1(J = 13)

−20
0

20

−20020
0

5

10

 Re(y) Im(y)

x f
Training data
Test data

(d) C-SSF1.3(J = 12)

Figure 5: Outputs of C-MLPs.

