「固体物理学入門」Kittel(丸善) 客員教授 田中基彦 第7章 エネルギーバンド

よい導体とよい絶縁体には,大きな差異がある 10⁻¹⁰ Ωcm v.s. 10²² Ωcm

外から与えられた電場に電子が反応する

◆結晶のなかの電子は、エネルギーバンドの なかに配置される

エネルギーギャップ

●エネルギーバンドは、電子をエネルギー領域 で分離し、電子が禁止される領域が存在する

- ●エネルギーギャップは、伝導電子の波と 結晶のイオン殻によって生じている 絶縁体 電子が満たされるものと空の部分に分離 金属 電子のうち10%--90%を満たされているもの
- 結晶内の電子は、有効質量 m*を持って振舞う

直接ギャップ半導体における、電子とホールの有効質量

Table 2 Effective masses of electrons and holes in direct gap semiconductors

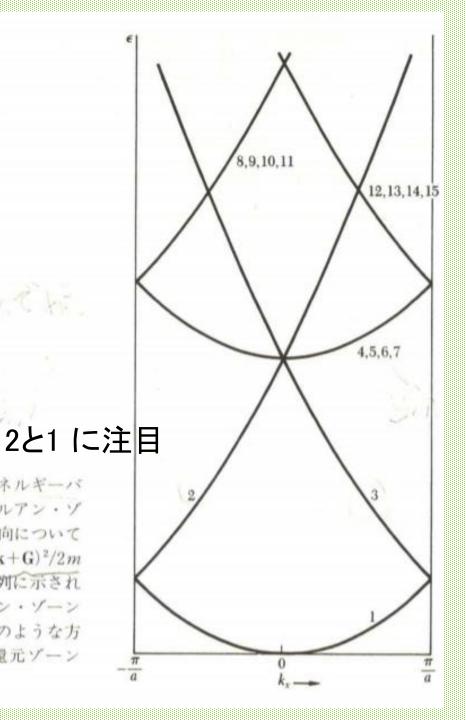
Table 2 第8章

Crystal	電子0 Electron m _e /m	重いホール1 Heavy hole m _{hh} /m	軽いホール Light hole m _{th} /m	2 分離したホー Split-off hole m _{soh} /m	Spin-orbit Δ, eV
InSb	0.015	0.39	0.021	(0.11)	0.82
InAs	0.026	0.41	0.025	0.08	0.43
InP	0.073	0.4	(0.078)	これ程度の違い	0.11
GaSb	0.047	0.3	0.06	これ程度の違い	0.80
GaAs	0.066	0.5	0.082	0.17	0.34
Cu ₂ O	0.99		0.58	0.69	0.13

空格子近似 p.186

第1ブリルアン・ゾーンにおける, 波動ベクトル ー エネルギー の関係について描く。

- ●自由電子エネルギー近似を使い、図から外れるときは、 第1ブリルアン・ゾーンに変換する
- ●第1ゾーンにおける $\mathbf{k}' + \mathbf{G} = \mathbf{k}$ となる逆格子ベクトル \mathbf{G} を求める。


$$\varepsilon(k_x, k_{\partial y}, k_{\partial z}) = (\hbar^2 / 2m)(\mathbf{k} + \mathbf{G})^2$$

$$= (\hbar^2 / 2m)\left[(k_x + G_x)^2 + (k_y + G_y)^2 + (k_z + G_z)^2\right]$$

空格子の近似、で導いた、 自由電子エネルギーバンド の低エネルギー部分

 $\mathcal{E}_{c} + \frac{\hbar^{2}}{2m_{e}}K^{2}$ $\mathcal{E}_{c} - \frac{\hbar^{2}}{2m_{h}}K^{2}$

図 8 単純立方空格子の自由電子エネルギーバンドの低エネルギー部分、第1ブリルアン・ゾーンの中に移したバンドを (k_x00) 方向について示す。自由電子のエネルギーは $\hbar^2(\mathbf{k}+\mathbf{G})^2/2m$ によって与えられる。 \mathbf{G} は表の第2列に示されている。 太線の曲線は第1ブリルアン・ゾーン $(-\pi/a < k_x < \pi/a)$ の中にある。このような方法で書かれたエネルギーバンドは還元ゾーン形式とよばれる。

p.187